Abstract
IRON is a low level operator dedicated to the estimation of single and multiple local orientations in images. Previous works have shown that IRON is more accurate and more selective than Gabor and Steerable filters, for textures corrupted with Gaussian noise. In this paper, we propose two new features. The first one is dedicated to the estimation of orientation in images damaged by impulsive noise. The second one applies when images are corrupted with an amplitude modulation, such as an inhomogeneous lighting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.