Abstract
Estimation of local orientations in multivariate signals is an important problem in image processing and computer vision. This general problem formulation also covers optical flow estimation, which can be regarded as orientation estimation in space-time-volumes. Modelling a signal using only a single orientation, however, is often too restrictive, since occlusions and transparencies occur frequently, thus necessitating the modelling and analysis of multiple orientations. We, therefore, develop a unifying mathematical model for multiple orientations: Beyond describing an arbitrary number of orientations in scalar- and vector-valued image data such as color image sequences, it allows the unified treatment of additively and occludingly superimposed oriented structures as well as of combinations of these. Based on this model, we describe estimation schemes for an arbitrary number of additively or occludingly superimposed orientations in images. We confirm the performance of our framework on both synthetic and real image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.