Abstract

Recovery that takes place in a cold environment after endurance exercise elevates PGC-1α mRNA whereas ERRα and NRF2 mRNA expression are inhibited. However, the effect of local skeletal muscle cooling on mitochondrial-related gene expression is unknown. PurposeTo determine the impact of local skeletal muscle cooling during recovery from an acute bout of exercise on mitochondrial-related gene expression. MethodsRecreationally-trained male cyclists (n=8, age 25±3 y, height 181±6cm, weight 79±8kg, 12.8±3.6% body fat, VO2peak 4.52±0.88L·min−1 protocol) completed a 90-min variable intensity cycling protocol followed by 4h of recovery. During recovery, ice was applied intermittently to one leg (ICE) while the other leg served as a control (CON). Intramuscular temperature was recorded continuously. Muscle biopsies were taken from each vastus lateralis at 4h post-exercise for the analysis of mitochondrial-related gene expression. ResultsIntramuscular temperature was colder in ICE (26.7±1.1°C) than CON (35.5±0.1°C) throughout the 4h recovery period (p<0.001). There were no differences in expression of PGC-1α, TFAM, NRF1, NRF2, or ERRα mRNA between ICE and CON after the 4h recovery period. ConclusionLocal muscle cooling after exercise does not impact the expression of mitochondrial biogenesis-related genes compared to recovery from exercise in control conditions. When these data are considered with previous research, the stimuli for cold-induced gene expression alterations may be related to factors other than local muscle temperature. Additionally, different intramuscular temperatures should be examined to determine dose-response of mitochondrial-related gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.