Abstract

Object detection has been widely studied in the com- puter vision community and it has many real applications, despite its variations, such as scale, pose, lighting, and background. Most classical object detection methods heavily rely on category- based training to handle intra-class variations. In contrast to classical methods that use a rigid category-based representation, exemplar-based methods try to model variations among positives by learning from specific positive samples. However, current existing exemplar-based methods either fail to use any training information or suffer from a significant performance drop when few exemplars are available. In this paper, we design a novel local metric learning approach to well handle exemplar- based object detection task. The main works are two-fold: 1) a novel local metric learning algorithm called exemplar metric learning (EML) is designed and 2) an exemplar-based object detection algorithm based on EML is implemented. We evaluate our method on two generic object detection data sets: UIUC-Car and UMass FDDB. Experiments show that compared with other exemplar-based methods, our approach can effectively enhance object detection performance when few exemplars are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.