Abstract

In this paper, we explore the concept of sequential learning and the efficacy of global and local neural network learning algorithms on a sequential learning task. Pseudorehearsal, a method developed by Robins19) to solve the catastrophic forgetting problem which arises from the excessive plasticity of neural networks, is significantly more effective than other local learning algorithms for the sequential task. We further consider the concept of local learning and suggest that pseudorehearsal is so effective because it works directly at the level of the learned function, and not indirectly on the representation of the function within the network. We also briefly explore the effect of local learning on generalization within the task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.