Abstract
Carrier lifetime in photoelectric processes is the average time an excited carrier is free before recombining or trapping. Lifetime is directly related to defects and it is a key parameter in analyzing photovoltaic effects in semiconductors. We show here a scanning probe method combined with photoinduced current spectroscopy that allows mapping with nanoscale resolution of the generation and recombination lifetimes. Using this method we have analyzed the mechanism of the abnormal photovoltaic effect in multiferroic bismuth ferrite, BiFeO(3). We found that generation and recombination lifetimes in BiFeO(3) are large due to complex generation and recombination processes that involve shallow energy levels in the band gap. The domain walls do not play a major role in the photovoltaic mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.