Abstract

Comparative analysis of the carrier recombination and generation lifetime as well as reverse recovery durations (RR), dependent on electron and proton irradiation uence, has been performed in oat zone (FZ) silicon PIN diodes and wafer structures. These investigations have been devoted to determination of the dominant radiation defects and their depth distribution, to design the irradiation technology steps for PIN diodes with fast switching rates. The samples were irradiated with 2 MeV protons and 5n10 MeV electrons with uences in the range of 7¢10 12 n7¢10 14 p=cm 2 as well as 2.4¢10 12 n5.2¢10 13 e=cm 2 , respectively. Carrier decay constituents and values of recombination lifetime have been evaluated by employing a microwave probed photoconductivity transient technique (MW-PC), while deep levels spectra ascribed to generation lifetime variations have been examined by exploiting capacitance deep level transient spectroscopy (C-DLTS). Recombination lifetime decreases from several microseconds to few nanoseconds in the proton irradiated Si, while DLTS spectra show an increase of the amplitude of a DLTS peak at 170 K with irradiation uence. This peak dominates within DLTS spectra where peaks at 90, as well as at 140 and 250 K, ascribed to vacancy attributed defects, are also present. Recombination lifetime decreases from tens to few microseconds, while vacancy ascribed defects dominate in DLTS spectra under increase of irradiation uence for the same material irradiated with electrons. Sharply inhomogeneous depth distribution of recombination lifetime in proton irradiated samples has been revealed from the cross-sectional scans of the excess carrier lifetime measured by MW-PC technique. This indicates a formation of the ‐-layer of enhanced recombination in vicinity of the p + nn junction of PIN diodes. Meanwhile, the recombination lifetime is nearly constant within depth of the electron irradiated Si samples. These characteristics correlate rather well with reverse recovery time constants of the same PIN diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.