Abstract

AbstractIn the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. This paper is devoted to a class of inhomogeneous random walks on $\mathbb{Z}^d$ termed ‘Markov additive processes’ (also known as Markov random walks, random walks with internal degrees of freedom, or semi-Markov processes). In this model, the increments of the walk are still independent but their distributions are dictated by a Markov chain, termed the internal Markov chain. While this model is largely studied in the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This paper extends two results for more general internal operators: a local limit theorem and a sufficient criterion for their transience. These results are thereafter applied to a new family of models of drifted random walks on the lattice $\mathbb{Z}^d$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call