Abstract

This paper illustrates a method based on local likelihood (LL) for detecting disease clusters. The approach is based on estimating a lasso distance for each region: within which regions are considered to be clustered. An important advantage in implementing this approach is that it does not require any special Monte Carlo Markov Chain (MCMC) algorithm, e.g., reversible jump MCMC, which is essential in hidden Markov model approach. Another advantage is that extending the model to incorporate covariates is straightforward. We illustrate three ways of doing this by using Eastern Germany lip cancer data. By using simulated data, we have made a comparison with the BYM model [Besag et al. (1991) Annals of the Institute of Statistical Mathematics, 43, 1–59] and the mixture model [Lawson and Clark (2002) Disease Mapping and Risk Assessment for Public Health, Chapman and Hall]. We also did a limited examination of the ability of the LL model to recover true relative risk under different priors for lasso parameter. In order to check the edge effects, which has been overlooked in many spatial clustering models for disease mapping but deserves special attention as it lacks observable neighbors, we have adapted here a simple approach to observe the changes in relative risks when the edge regions are omitted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.