Abstract

This article generalizes the Monte Carlo Markov Chain (MCMC) algorithm, based on the Gibbs weighted Chinese restaurant (gWCR) process algorithm, for a class of kernel mixture of time series models over the Dirichlet process. This class of models is an extension of Lo's (Ann. Stat. 12:351---357, 1984) kernel mixture model for independent observations. The kernel represents a known distribution of time series conditional on past time series and both present and past latent variables. The latent variables are independent samples from a Dirichlet process, which is a random discrete (almost surely) distribution. This class of models includes an infinite mixture of autoregressive processes and an infinite mixture of generalized autoregressive conditional heteroskedasticity (GARCH) processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.