Abstract

We explicitly compute the local invariants (heat kernel coefficients) of a conformally deformed non-commutative d-torus using multiple operator integrals. We derive a recursive formula that easily produces an explicit expression for the local invariants of any order k and in any dimension d. Our recursive formula can conveniently produce all formulas related to the modular operator, which before were obtained in incremental steps for d∈{2,3,4} and k∈{0,2,4}. We exemplify this by writing down some known (k=2, d=2) and some novel (k=2, d≥3) formulas in the modular operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.