Abstract
Although topological band theory has been used to discover and classify a wide array of novel topological phases in insulating and semimetal systems, it is not well suited to identifying topological phenomena in metallic or gapless systems. Here, we develop a theory of topological metals based on the system's spectral localizer and associated Clifford pseudospectrum, which can both determine whether a system exhibits boundary-localized states despite the presence of degenerate bulk bands and provide a measure of these states' topological protection even in the absence of a bulk band gap. We demonstrate the generality of this method across symmetry classes in two lattice systems, a Chern metal and a higher-order topological metal, and prove the topology of these systems is robust to relatively strong perturbations. The ability to define invariants for metallic and gapless systems allows for the possibility of finding topological phenomena in a broad range of natural, photonic, and other artificial materials that could not be previously explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.