Abstract
The results of an experimental investigation of local convective heat transfer from the surface of a rotating disk in an impinging free round air jet, issuing from a long tube, are reported. Using a transient heat transfer method applied to the ring-shaped h-calorimeter (as a single lumped capacitance element) measurements of convective heat transfer rates were made for five impingement radius (fixed) to tube diameter ratios for a range of rotational and jet Reynolds numbers. In the pure impingement-dominated regime, where the rotation of the disk does not show an effect on heat transfer, the velocity ratio is ur/uj ≤ (1 − 2 × 10−4 Re2/3) (1 − 0.18 r/d), where ur = tangential velocity of the disk at the jet impingement radius r, uj = average exit velocity of jet, and d = jet tube diameter. In this regime, the local heat transfer on the rotating disk can be strongly enhanced by jet impingement. For ur/uj ⪞ 5, the effect of the jet impingement on heat transfer can be neglected. The discussion of the heat transfer results has been supported by smoke flow visualization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have