Abstract
We study local-global questions for Galois cohomology over the function field of a curve defined over a p p -adic field (a field of cohomological dimension 3). We define Tate-Shafarevich groups of a commutative group scheme via cohomology classes locally trivial at each completion of the base field coming from a closed point of the curve. In the case of a torus we establish a perfect duality between the first Tate-Shafarevich group of the torus and the second Tate-Shafarevich group of the dual torus. Building upon the duality theorem, we show that the failure of the local-global principle for rational points on principal homogeneous spaces under tori is controlled by a certain subquotient of a third Ć©tale cohomology group. We also prove a generalization to principal homogeneous spaces of certain reductive group schemes in the case when the base curve has good reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.