Abstract

The interfacial area concentration is one of the most important parameters in analyzing two-phase flow based on the two-fluid model. The local instantaneous formulation of the interfacial area concentration is introduced here. Based on this formulation, time and spatial averaged interfacial area concentrations are derived, and the local ergodic theorem (the equivalency of the time and spatial averaged values) is obtained for stationary developed two-phase flow. On the other hand, the global ergodic theorem is derived for general two-phase flow. Measurement methods are discussed in detail in relation to the present analysis. The three-probe method, with which local interfacial area concentration can be measured accurately, has been proposed. The one-probe method under some statistical assumptions has also been proposed. In collaboration with the experimental data for the interfacial velocity, radial profiles of the local interfacial area concentration are obtained based on the one-probe method. The result indicates that the local interfacial area concentration has a peak value near the tube wall in bubbly flow. This is consistent with the near wall peak of local void fraction separately observed. In slug flow it shows a higher value in the central region of the tube for that particular set of data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.