Abstract

The inability to exhaust airborne formaldehyde and other volatile organic compounds from a gross anatomy laboratory is an impediment to gross anatomical education. Despite the importance of removing harmful airborne chemicals, there is scant information regarding how to build effective local exhaust ventilation systems. In this study, various exhaust systems were built and assessed for exhaust flow, airborne formaldehyde removal, and noise production with the aim of identifying inexpensive and simple exhaust systems that can create a healthy and quiet exhaust flow from a downdraft dissection table. The results of the study include details regarding 11 local exhaust ventilation systems, including an exhaust system that produces an exhaust flow of 777cfm, allows no detectable airborne formaldehyde (0ppm) despite a 1000mL pool of formalin (composed of 37% formaldehyde) positioned directly beneath a formaldehyde-meter, and operates at a very low noise level (maximum of 69.2dBA with coexisting baseline room noise of 38.6dBA). Furthermore, the aforementioned local exhaust ventilation system costs less than $400 (USD) to build and can be assembled in a matter of minutes with minimal know-how. The local ventilation systems assessed in this study were capable of down-drafting air away from the breathing zone; therefore, the utilization of such local ventilation systems may have the additional benefit of decreasing the person-to-person transmission of aerosolized pathogens. This information marks an improvement in laboratory health and safety measures, facilitates the creation of gross anatomy laboratories, and improves access to gross anatomical education.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call