Abstract

High power conversion efficiencies in state-of-the-art nonfullerene organic solar cells (NF OSCs) call for elucidation of the underlying working mechanisms of both high photocurrent densities and low nonradiative voltage losses under small energy offsets. Here, to address this fundamental issue, we have assessed the nature of interfacial charge-transfer (CT) states in a representative small-molecule NF OSC (DRTB-T:IT-4F) by time-dependent density functional theory calculations. The calculated results point to the fact that the CT states can borrow considerable oscillator strengths from the energy-close local excitation (LE) states or be fully hybridized with these LE states by molecular aggregation at the donor-acceptor interfaces. The LE/CT hybridization can promote charge generation by direct population of thermalized CT or LE/CT states under illumination. At the same time, the increased oscillator strengths of the lowest CT state will improve the luminescence quantum efficiencies and thus reduce nonradiative voltage losses. Our work suggests that it is crucial to tune the LE/CT hybridization by optimization of the donor and acceptor molecular and interfacial structures to further improve the NF OSC performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.