Abstract

Machine learning (ML) models in materials science are mainly developed for predicting global properties, such as formation energy, band gap, and elastic modulus. Thus, these models usually fall short in describing local characteristics, such as molecular adsorption on surfaces. Here, we introduce a local environment interaction-based ML framework that contains a modified graph-based Voronoi tessellation geometrical representation, improved fingerprint feature engineering, and traditional ML and advanced deep learning (DL) algorithms. The precise characterization can be extracted using this framework for representing local information of adsorption of molecules on a surface. Using both traditional ML and advanced DL algorithms, we demonstrate remarkable prediction accuracy and robustness on 0D, two-dimensional (2D), and three-dimensional (3D) catalysts. Furthermore, it is found that the employment of this approach reduces data requirements and augments computational speed, specifically for DL algorithms. This work provides an effective and universal ML framework for various applications of molecular adsorption from catalysis, sensors, carbon capture, and energy storage to drug delivery, signifying a novel and promising avenue in the field of materials informatics. The implementation code in this work is available at https://github.com/mpeshel/LEI-framework LERN .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call