Abstract

AbstractThe optical properties and their modification by crystal defects of wurtzite GaN are investigated using spatially resolved electron energy-loss spectroscopy (EELS) in a dedicated ultra-high vacuum field emission gun scanning transmission electron microscope. The calculated density of states of the bulk crystal reproduces well the features of the measured spectra. The profound effect of a prismatic stacking fault on the local electronic structure is shown by the spatial variation of the optical properties derived from low-loss spectra. It is found that a defect state at the fault appears to bind 1.5 electrons per atom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.