Abstract

Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVxP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability. The incorporation of V effectively promotes initial H2O adsorption and H* formation, leading to a lower overpotential. As a result, the fabricated NiVxP@NF demonstrates favorable hydrogen evolution reaction (HER) activity and stability, with only 85 mV overpotential needed to reach 10 mA·cm−2 and showing no significant increase in the overpotential during the long-term 78-hour stability test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.