Abstract

In this manuscript, Local dynamic behaviors including stability and Hopf bifurcation of a new four-dimensional quadratic autonomous system are studied both analytically and numerically. Determining conditions of equilibrium points on different parameters are derived. Next, the stability conditions are investigated by using Routh-Hurwitz criterion and bifurcation conditions are investigated by using Hopf bifurcation theory, respectively. It is found that Hopf bifurcation on the initial point is supercritical in this four-dimensional autonomous system. The theoretical results are verified by numerical simulation. Besides, the new four-dimensional autonomous system under the parametric conditions of hyperchaos is studied in detail. It is also found that the system can enter hyperchaos, first through Hopf bifurcation and then through periodic bifurcation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.