Abstract

This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincare sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincare–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.