Abstract

Non-negative matrix factorization (NMF) ignores both the local geometric structure of and the discriminative information contained in a data set. A manifold geometry-based NMF dimension reduction method called local discriminant NMF (LDNMF) is proposed in this paper. LDNMF preserves not only the non-negativity but also the local geometric structure and discriminative information of the data. The local geometric and discriminant structure of the data manifold can be characterized by a within-class graph and a between-class graph. An efficient multiplicative updating procedure is produced, and its global convergence is guaranteed theoretically. Experimental results on two hyperspectral image data sets show that the proposed LDNMF is a powerful and promising tool for extracting hyperspectral image features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.