Abstract

For classifying images with various appearances, graph embedding based subspace learning has difficulty in taking a comprehensive consideration of both local geometrical structure and between-class discriminative information. In addition, when no sufficient training samples exist, using only the simple weight graph corresponding to labeled samples, the embedding subspace may not be accurately modeled. We present a semisupervised graph embedding algorithm by combining graph embedding and sparse representation. This algorithm can effectively learn a compact and semantic subspace by using a locally connected graph, which can model the geometrical structure and essential correlation of subclusters within a class and can fully utilize both labeled and unlabeled samples. Moreover, using L2,1-norm, the proposed algorithm can preserve the sparse representation property of images from the original space in the lower dimensional projected space. Our experiments demonstrate that the proposed algorithm has better performance than the alternatives reported in recent literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.