Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability with complex pathophysiology including prolonged neuroinflammation, apoptosis, and glial scar formation. The upregulation of RhoA is a key factor in the pathological development of secondary injury following TBI. Previously, we developed a novel cationic, amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), as a nanocarrier for delivery of therapeutic nucleic acids. In a rat compression spinal cord injury model, delivery of siRNA targeting RhoA (siRhoA) by PgP resulted in RhoA knockdown; reduced astrogliosis and inflammation; and promoted axonal regeneration/sparing. Here, we evaluated the effect of RhoA knockdown by PgP/siRhoA nanoplexes in a rat controlled cortical impact TBI model. A single intraparenchymal injection of PgP/siRhoA nanoplexes significantly reduced RhoA expression, lesion volume, neuroinflammation, and apoptosis, and increased neuronal survival in the ipsilateral cortex. These results suggest that PgP/siRhoA nanoplexes can efficiently knockdown RhoA expression in the injured brain and reduce secondary injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call