Abstract
IntroductionThe RANKL–OPG axis is a key regulator of osteoclastogenesis and bone turnover activity. Its contribution to bone resorption under altered mechanical states, however, has not been fully elucidated. Here we examined the role of OPG in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. MethodsThe maxillary first molars of male Sprague-Dawley rats were moved mesially using a calibrated nickel–titanium spring attached to the maxillary incisor teeth. Two different doses (0.5 mg/kg, 5.0 mg/kg) of a recombinant fusion protein (OPG-Fc), were injected twice weekly mesial to the first molars. Tooth movement was measured using stone casts that were scanned and magnified. Changes in bone quantity were measured using micro-computed tomography and histomorphometric analysis was used to quantify osteoclasts and volumetric parameters. Finally, circulating levels of TRAP-5b (a bone resorption marker) was measured using enzyme-linked immunosorbent assay. ResultsThe 5.0 mg/kg OPG-Fc dose showed a potent reduction in mesial molar movement and osteoclast numbers compared to controls (p<0.01). The molar movement was inhibited by 45.7%, 70.6%, and 78.7% compared to controls at days 7, 14, and 21 respectively, with the high dose of OPG. The 0.5 mg dose also significantly (p<0.05) inhibited molar movement at days 7 (43.8%) and 14 (31.8%). While incisor retraction was also decreased by OPG-Fc, the ratio of incisor to molar tooth movement was markedly better in the high-dose OPG group (5.2:1, p<0.001) compared to the control group (2.3:1) and the low-dose OPG group (2.0:1). ConclusionsLocal delivery of OPG-Fc inhibits osteoclastogenesis and tooth movement at targeted dental sites.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have