Abstract

Local delamination buckling formulas for laminated composite beams are derived based on the rigid, semirigid, and flexible joint models with respect to three bilayer beam (i.e., conventional composite, shear-deformable bilayer, and interface-deformable bilayer, respectively) theories. Two local delamination buckling modes (i.e., sublayer delamination buckling and symmetrical delamination buckling) are analyzed and their critical buckling loads based on the three joint models are obtained. A numerical finite-element simulation is carried out to validate the accuracy of the formulas, and parametric studies of delamination length ratio, the transverse shear effect, and the influence of interface compliance are conducted to demonstrate the improvement of the flexible joint model compared to the rigid and semirigid joint models. The explicit local delamination buckling solutions developed in this study facilitate the design analysis and optimization of laminated composite structures and provide simplified and improved practical design equations and guidelines for buckling analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call