Abstract

Space–time adaptive processing (STAP) is an advanced technique for airborne radar to mitigate clutter and detect moving targets effectively. Based on adaptive radar theory, the degrees-of-freedom of a STAP processor should be larger than that of a clutter. In this study, the local degrees-of-freedom (LDOF) of clutter for reduced-dimensional STAP (RD-STAP) methods with subarray configurations are studied. The LDOF formulas are proposed and verified by simulations. With these formulas, the LDOFs of clutter will collapse under certain radar configurations, which are favourable for clutter mitigation. Therefore these formulas could be used as guidance for STAP radar to choose appropriate system parameters and processing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.