Abstract

Infrared small target detection (ISTD) plays a crucial role in precision guidance, anti-missile interception, and military early-warning systems. Existing approaches suffer from high false alarm rates and low detection rates when detecting dim and small targets in complex scenes. A robust scheme for automatically detecting infrared small targets is proposed to address this problem. First, a gradient weighting technique with high sensitivity was used for extracting target candidates. Second, a new collection of features based on local convergence index (LCI) filters with a strong representation of dim or arbitrarily shaped targets was extracted for each candidate. Finally, the collective set of features was inputted to a random undersampling boosting classifier (RUSBoost) to discriminate the real targets from false-alarm candidates. Extensive experiments on public datasets NUDT-SIRST and NUAA-SIRST showed that the proposed method achieved competitive performance with state-of-the-art (SOTA) algorithms. It is also important to note that the average processing time was as low as 0.07 s per frame with low time consumption, which is beneficial for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call