Abstract
Local mass transfer data for high-profile fins in the second row of in-line and staggered, circular-finned tubes are presented for Reynolds numbers from 5000 to 28,000 based on hydraulic diameter and velocity at the minimum flow area. The data, obtained using an optical adaptation of the naphthalene sublimation technique, show that local variations in heat transfer do not cause significant fin efficiency deviations from the analytical solution of Gardner (contrary to earlier reports). Average heat transfer and pressure drop data indicate that the thermal performance of the in-line arrangement is comparable to the staggered configuration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have