Abstract

We demonstrate a method to electrically manipulate the spin polarization in a semiconductor on a micrometer length scale and a submicrosecond time scale. A variable magnetic field induced by a microscale current loop magnetizes the Mn2+ ions in a CdMnTe/CdMgTe diluted magnetic semiconductor quantum well, and via sp-d exchange interaction polarizes photogenerated electron-hole pairs. A maximum spin polarization degree of ±8.5% is obtained at 4.2 K without external magnetic field. The induced carrier spin polarization and the thermal heating of Mn2+ spins are resolved spatially and temporally by microphotoluminescence measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call