Abstract

AbstractFor the theory of boundary value problems in linear elasticity, it is of crucial importance that the space of vector‐valued L2‐functions whose symmetrized Jacobians are square‐integrable should be compactly embedded in L2. For regions with the cone property this is usually achieved by combining Korn's inequalities and Rellich's selection theorem. We shall show that in a class of less regular regions Korn's second inequality fails whereas the desired compact embedding still holds true.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.