Abstract

The sea urchin embryo is a good model system for studying the role of mechanical and cell-cell interactions during epithelial invagination, cell rearrangement and mesenchymal patterning in the gastrula. The mechanisms underlying the initial invagination of the archenteron have been surprisingly elusive; several possible mechanisms are discussed. In contrast to its initial invagination, the cellular basis for the elongation of the archenteron is better understood: both autonomous epithelial cell rearrangement and further rearrangement driven by secondary mesenchyme cells appear to be involved. Experiments indicate that patterning of freely migrating primary mesenchyme cells and secondary mesenchyme cells residing in the tip of the archenteron relies to a large extent on information resident in the ectoderm. Interactions between cells in the early embryo and later cell-cell interactions are both required for the establishment of ectodermal pattern information. Surprisingly, in the case of the oral ectoderm the fixation of pattern information does not occur until immediately prior to gastrulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.