Abstract

Local carrier dynamics around the sub-surface basal-plane stacking faults (BSFs) accidentally formed in a low dislocation density c-plane GaN were studied by the spatio-time-resolved cathodoluminescence measurement. A high photoelectron (PE) emission efficiency of the front-excitation-type PE-gun enabled to investigate sub-surface defect structures with low acceleration voltages. As a result, the presence of an energy transfer channel of excitons from neutral donor bound states to I1-type BSF bound states was confirmed. Careful comparisons of cathodoluminescence intensity mapping images taken at 3.305 eV and those corresponding to I1-BSFs indicated the presence of prismatic-plane stacking faults connecting the BSFs into a bundle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.