Abstract
This paper introduces a novel descriptor non-subsampled shearlet transform (NSST) local bit-plane neighbour dissimilarity pattern (NSST-LBNDP) for biomedical image retrieval based on NSST, bit-plane slicing and local pattern based features. In NSST-LBNDP, the input image is first decomposed by NSST, followed by introduction of non-linearity on the NSST coefficients by computing local energy features. The local energy features are next normalized into 8-bit values. The multiscale NSST is used to provide translational invariance and has flexible directional sensitivity to catch more anisotropic information of an image. The normalised NSST subband features are next decomposed into bit-plane slices in order to capture very fine to coarse subband details. Then each bit-plane slices of all the subbands are encoded by exploiting the dissimilarity relationship between each neighbouring pixel and its adjacent neighbours. Experiments on two computed tomography (CT) and one magnetic resonance imaging (MRI) image datasets confirms the superior results of NSST-LBNDP when compared to many recent well known relevant descriptors both in terms of average retrieval precision (ARP) and average retrieval recall (ARR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.