Abstract

The paper establishes the local asymptotic normality property for general conditionally heteroskedastic time series models of multiplicative form, $\epsilon _t=\sigma _t(\boldsymbol {\theta }_0)\eta _t$ , where the volatility $\sigma _t(\boldsymbol {\theta }_0)$ is a parametric function of $\{\epsilon _{s}, s< t\}$ , and $(\eta _t)$ is a sequence of i.i.d. random variables with common density $f_{\boldsymbol {\theta }_0}$ . In contrast with earlier results, the finite dimensional parameter $\boldsymbol {\theta }_0$ enters in both the volatility and the density specifications. To deal with nondifferentiable functions, we introduce a conditional notion of the familiar quadratic mean differentiability condition which takes into account parameter variation in both the volatility and the errors density. Our results are illustrated on two particular models: the APARCH with asymmetric Student-t distribution, and the Beta-t-GARCH model, and are extended to handle a conditional mean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.