Abstract

This paper proposes an empirical likelihood-based estimation method for semiparametric conditional moment restriction models, which contain finite dimensional unknown parameters and unknown functions. We extend the results of Donald, Imbens, and Newey (2003, Journal of Econometrics 117, 55–93) by allowing unknown functions to be included in the conditional moment restrictions. We approximate unknown functions by a sieve method and estimate the finite dimensional parameters and unknown functions jointly. We establish consistency and derive the convergence rate of the estimator. We also show that the estimator of the finite dimensional parameters is $\sqrt n$-consistent, asymptotically normally distributed, and asymptotically efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.