Abstract

ObjectivesLocal anesthetics act on G protein-coupled receptors (GPCRs); thus, their potential as allosteric modulators of GPCRs has attracted attention. Intracellular signaling via GPCRs involves both G-protein- and β-arrestin-mediated pathways. To determine the effects of local anesthetics on muscarinic acetylcholine receptors (mAChR), a family of GPCRs, we analyzed the effects of local anesthetics on mAChR-mediated Ca2+ responses and formation of receptor–β-arrestin complexes in the HSY human parotid cell line. MethodsCa2+ responses were monitored by fura-2 spectrofluorimetry. Ligand-induced interactions between mAChR and β-arrestin were examined using a β-arrestin GPCR assay kit. ResultsLidocaine reduced mAChR-mediated Ca2+ responses but did not change the intracellular Ca2+ concentration in non-stimulated cells. The membrane-impermeant lidocaine analog QX314 and procaine inhibited mAChR-mediated Ca2+ responses, with EC50 values of 48.0 and 20.4 μM, respectively, for 50 μM carbachol-stimulated Ca2+ responses. In the absence of extracellular Ca2+, the pretreatment of cells with QX314 reduced carbachol-induced Ca2+ release, indicating that QX314 reduced Ca2+ release from intracellular stores. Lidocaine and QX314 did not affect store-operated Ca2+ entry as they did not alter the thapsigargin-induced Ca2+ response. QX314 and procaine reduced the carbachol-mediated recruitment of β-arrestin, and administration of procaine suppressed pilocarpine-induced salivary secretion in mice. ConclusionLocal anesthetics, including QX314, act on mAChR to reduce carbachol-induced Ca2+ release from intracellular stores and the recruitment of β-arrestin. These findings support the notion that local anesthetics and their derivatives are starting points for the development of functional allosteric modulators of mAChR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call