Abstract

The distribution of organisms in an environment is neither uniform nor random but is instead spatially patterned. The factors that control this patterning are complex and the underlying mechanisms are poorly understood. Soil microbes are critical to ecosystem function but exhibit highly complex distributions and community dynamics due in large part to the scale-dependent effects of environmental heterogeneity. To better understand the impact of environmental heterogeneity on the distribution of soil microbes, we sequenced the 16S rRNA gene from bacterial communities in the microbe-dominated polar desert ecosystem of the McMurdo Dry Valleys (MDV), Antarctica. Significant differences in key edaphic variables and alpha diversity were observed among the three lake basins of the Taylor Valley (Kruskal–Wallis; pH: χ2 = 68.89, P < 0.001, conductivity: χ2 = 35.03, P < 0.001, observed species: χ2 = 7.98, P = 0.019 and inverse Simpson: χ2 = 18.52, P < 0.001) and each basin supported distinctive microbial communities (ANOSIM R = 0.466, P = 0.001, random forest ratio of 14.1). However, relationships between community structure and edaphic characteristics were highly variable and contextual, ranging in magnitude and direction across regional, basin, and local scales. Correlations among edaphic factors (pH and soil conductivity) and the relative abundance of specific phyla were most pronounced along local environmental gradients in the Lake Fryxell basin where Acidobacteria, Bacteroidetes, and Proteobacteria declined while Deinococcus–Thermus and Gemmatimonadetes increased with soil conductivity (all P < 0.1). Species richness was most strongly related to the soil conductivity gradient present within this study system. We suggest that the relative importance of pH versus soil conductivity in structuring microbial communities is related to the length of edaphic gradients and the spatial scale of sampling. These results highlight the importance of conducting studies over large ranges of key environmental gradients and across multiple spatial scales to assess the influence of environmental heterogeneity on the composition and diversity of microbial communities.

Highlights

  • Understanding the controls on the distribution of organisms has been one of the fundamental goals of ecology for the past century

  • Pyrosequencing of 16S rRNA gene libraries resulted in 680,727 reads (6,275 ± 4,540 reads per sample, n = 107 samples), with a mean length of 393 ± 28 bp

  • This study focused on the relationships among edaphic pH and electrical conductivity (EC) gradients on bacterial communities as they vary across local, lake basin, and regional scales

Read more

Summary

Introduction

Understanding the controls on the distribution of organisms has been one of the fundamental goals of ecology for the past century. The factors that control this patterning are complex, multifaceted, and include abiotic characteristics, biotic interactions, and stochastic events. Many ecological processes that influence the distribution, abundance, and interactions of species are scale-dependent, including the flow of individuals within an environment, the impacts and extent of disturbances, and variation in environmental conditions and habitability (Leibold et al, 2004). Spatial variation in environmental conditions, referred to here as environmental heterogeneity, is often cited as the primary driver of biodiversity (Stein et al, 2014; Coyle and Hurlbert, 2016). Environmental heterogeneity increases resource diversity and provides opportunities for niche partitioning and speciation events (Stein et al, 2014), allowing for increased species coexistence (MacArthur and Levins, 1964; Coyle and Hurlbert, 2016). Environmental heterogeneity is an important factor for species coexistence, persistence, and diversification (Stein et al, 2014)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call