Abstract

BackgroundSoil microbiome is an important part of the forest ecosystem and participates in forest ecological restoration and reconstruction. Niche differentiation with respect to resources is a prominent hypothesis to account for the maintenance of species diversity in forest ecosystems. Resource-based niche differentiation has driven ecological specialization. Plants influence soil microbial diversity and distribution by affecting the soil environment. However, with the change in plant population type, whether the distribution of soil microbes is random or follows an ecologically specialized manner remains to be further studied. We characterized the soil microbiome (bacteria and fungi) in different plant populations to assess the effects of phytophysiognomy on the distribution patterns of soil microbial communities in a temperate forest in China.ResultsOur results showed that the distribution of most soil microbes in different types of plant populations is not random but specialized in these temperate forests. The distribution patterns of bacteria and fungi were related to the composition of plant communities. Fungal species (32%) showed higher specialization than bacterial species (15%) for different types of plant populations. Light was the main driving factor of the fungal community, and soil physicochemical factors were the main driving factor of the bacterial community.ConclusionThese findings suggest that ecological specialization is important in maintaining local diversity in soil microbial communities in this forest. Fungi are more specialized than bacteria in the face of changes in plant population types. Changes in plant community composition could have important effects on soil microbial communities by potentially influencing the stability and stress resistance of forest ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.