Abstract

The aromaticity in porphyrinoids results from the π conjugation through two different annular perimeters: the macrocyclic ring and the local heterocyclic rings appended to it. Analyses, based on aromatic stabilization energies (ASE), indicate that the local circuits (6π) are responsible for the significant aromatic stabilization of these systems. This local aromaticity can be coupled with the one from 4n + 2π macrocyclic circuit. It can either compensate for the destabilization due to a 4n π macrocyclic circuit, or be the only source of aromatic stabilization in porphyrinoids with macrocycles without π-conjugated bonds. This "multifaceted" aromatic character of porphyrinoids makes it challenging to analyze their aromaticity using magnetic descriptors because of the intricate interaction of local versus macro-cyclic circulation. In this contribution, we show that the analysis of the bifurcation of the induced magnetic field, Bind, allows clear identification and quantification of both local, and macrocyclic aromaticity, in a representative group of porphyrinioids. In porphyrin, bifurcation values accurately predict the local and macrocyclic contribution rate to overall aromatic stabilization determined by ASE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.