Abstract

The global and macrocyclic aromaticity of porphyrinoids was characterized using our graph theory of aromaticity. The sequential line plots of topological resonance energy (TRE) against the number of π-electrons (N(π)) for different porphyrinoids are similar with four major extrema to those for five-membered heterocycles. This supports the view that five-membered rings are the main origin of global aromaticity in porphyrinoids. Macrocyclic circuits contribute significantly to macrocyclic π-circulation but modestly to global aromaticity. Macrocyclic aromaticity/antiaromaticity in oligopyrrolic macrocycles can be predicted by formally applying Hückel's [4n + 2] rule to an annulene-like main macrocyclic conjugation pathway (MMCP). This bridged annulene model can be justified by examining the contribution of individual macrocyclic circuits to macrocyclic aromaticity. A Hückel-like rule of macrocyclic aromaticity was found for porphyrinoid species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call