Abstract
BackgroundMagnetoencephalography (MEG) could explore and resolve brain signals with realistic temporal resolution to investigate the underlying electrophysiology of major depressive disorder (MDD) and the treatment efficacy. Here, we explore whether neuro-electrophysiological features of MDD at baseline can be used as a neural marker to predict their early antidepressant response. MethodsSixty-six medication-free patients with MDD and 48 healthy controls were enrolled and underwent resting-state MEG scans. Hamilton depression rating scale (HAMD-17) was assessed at both baseline and after two-week pharmacotherapy. We measured local and large-scale resting-state oscillatory dysfunctions with a data-driven model, the Fitting Oscillations & One-Over F algorithm. Then, we quantified band-limited regional power and functional connectivity between brain regions. ResultsAfter two-week follow-up, 52 patients completed the re-interviews. Thirty-one patients showed early response (ER) to pharmacotherapy and 21 patients did not. Treatment response was defined as at least 50 % reduction of severity reflected by HAMD-17. We observed decreased regional periodic power in patients with MDD comparing to controls. However, patients with ER exhibited that functional couplings across brain regions in both alpha and beta band were increased and significantly correlated with severity of depressive symptoms after treatment. Receiver operating characteristic curves (ROC) further confirmed the predictive ability of baseline large-scale functional connectivity for early antidepressant efficacy (AUC = 0.9969). LimitationsRelatively small sample size and not a double-blind design. ConclusionsThe current study demonstrated the electrophysiological dysfunctions of local neural oscillatory related with depression and highlighted the identification ability of large-scale couplings biomarkers in early antidepressant response prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.