Abstract

Simple SummaryIncreasing forest management practices by humans are threatening inherent insect biodiversity and thus important ecosystem services provided by them. One insect group which reacts sensitively to habitat changes are the rove beetles contributing to the maintenance of an undisturbed insect succession during decomposition by mainly hunting fly maggots. However, little is known about carrion-associated rove beetles due to poor taxonomic knowledge. In our study, we unveiled the human-induced and environmental drivers that modify rove beetle communities on vertebrate cadavers. At German forest sites selected by a gradient of management intensity, we contributed to the understanding of the rove beetle-mediated decomposition process. One main result is that an increasing human impact in forests changes rove beetle communities by promoting generalist and more open-habitat species coping with low structural heterogeneity, whereas species like Philonthus decorus get lost. Our results are not solely important for carrion ecological, but also for forensic entomological assessments on crime scenes, e.g., postmortem body relocation, because little information is available until now about rove beetles as one of the most important insect groups on bodies.Intensification of anthropogenic land use is a major threat to biodiversity and thus to essential ecosystem services provided by insects. Rove beetles (Coleoptera: Staphylinidae), which react sensitively to habitat changes, are species-rich colonizers of vertebrate cadavers and contribute to the important ecosystem service of carrion decomposition. The unveiling of anthropogenic and environmental drivers that modify carrion-associated rove beetle communities should improve our understanding of the plasticity of cadaver decay. We report the presence of 80 rove beetle species on 65 decomposing piglet cadavers at forest sites characterized by a gradient of management intensity across three geographic regions in Germany. Local and landscape drivers were revealed that shape beetle abundance, diversity, and community composition. Forest management and regions affect rove beetle abundance, whereas diversity is influenced by local habitat parameters (soil pH, litter cover) and regions. The community composition of rove beetles changes with management intensification by promoting generalist species. Regarding single species, Philonthus decorus and Anotylus mutator are linked to unmanaged forests and Ontholestes tessellatus to highly used forest stands. The spatial information provided about carrion-associated rove beetle communities in German forests is not only of carrion-ecological but also of forensic entomological interest.

Highlights

  • The intensification and change of anthropogenic land use are amongst the main threats to inherent biodiversity [1,2]

  • 2692 adult rove beetle individuals belonging to 8 subfamilies, 30 genera, and 80 species were collected on 65 piglet cadavers at the various experimental forest sites in Germany (N = 65 sites)

  • As the study regions andof forest (SMI)of explained most of the variance in rove beetle revealed that rove beetle community composition on piglet carrion differed significantly between communities revealed by redundancy analysis (RDA) analysis, we further examined which single rove beetle all three mostly affected

Read more

Summary

Introduction

The intensification and change of anthropogenic land use are amongst the main threats to inherent biodiversity [1,2]. In forests, the loss of biodiversity can be caused directly via the loss of population size because of harvest activities or the loss of microhabitats such as deadwood and litter and indirectly by the loss of the structural heterogeneity of habitat or prey [3,4]. Rove beetles (Coleoptera: Staphylinidae) form one of the most diverse beetle families accounting for about 63,000 described species worldwide [9] and for about 1500 described species within German entomofauna. They inhabit almost every niche in terrestrial ecosystems [10,11]. Rove beetles are one of the most numerous colonizers of carrion [14,15,16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call