Abstract

AbstractQuantifying partitioning of precipitation into evapotranspiration (ET) and runoff is the key to assessing water availability globally. Here we develop a universal model to predict water‐energy partitioning (ϖ parameter for the Fu's equation, one form of the Budyko framework) which spans small to large scale basins globally. A neural network (NN) model was developed using a data set of 224 small U.S. basins (100–10,000 km2) and 32 large, global basins (~230,000–600,000 km2) independently and combined based on both local (slope, normalized difference vegetation index) and global (geolocation) factors. The Budyko framework with NN estimated ϖ reproduced observed mean annual ET well for the combined 256 basins. The predicted mean annual ET for ~36,600 global basins is in good agreement (R2 = 0.72) with an independent global satellite‐based ET product, inversely validating the NN model. The NN model enhances the capability of the Budyko framework for assessing water availability at global scales using readily available data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.