Abstract
This paper considers the deadlock prevention problem for a class of conjunctive/disjunctive resource allocation systems (C/D-RAS) which cover relatively general cases in which the multiple resource acquisitions and flexible routings are allowed. First, an improved siphon-based liveness characterization for the Petri nets modeling C/D-RAS is proposed. Subsequently, this characterization facilitates the utilization of a mixed integer programming (MIP) based deadlock prevention policy that can well avoid the explicit enumeration of both siphons and the reachable states. The resulting policy is implemented by an iterative algorithm each step of which is characterized as an MIP formulation in conjunction with both a bad marking detection and a feedback control operation. Finally, the deadlock prevention policy developed in this paper is, respectively, characterized by the local and global ones so as to realize a trade-off between the behavior permissiveness and the structural simplicity of the supervisor. Both the theoretical and experimental results validate the effectiveness and efficiency of such an approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.