Abstract

Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with (33)P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake.

Highlights

  • Phosphate rock as a fertilizer is important for crop production worldwide

  • The magnitude of this systemic arbuscular mycorrhizal (AM)-induced suppression of direct pathway for Pi uptake (DPU) activity was much lower than the local suppression in AM roots, where at least 80% of the P taken up was via the MPU at low soil P levels

  • This suggests that a colonized root half did not exert a long-distance effect upon DPU transporter expression

Read more

Summary

Introduction

Phosphate rock as a fertilizer is important for crop production worldwide It is a limited and non-renewable natural resource, being depleted at an increasing rate, while demand for food production increases (Cordell et al, 2009; Gilbert, 2009). One strategy for foraging for nutrients beyond the depletion zone of roots is the formation of arbuscular mycorrhizas, an association between the plant and specialized soil fungi (Smith and Read, 2008). Arbuscular mycorrhizas increase plant uptake of soil nutrients such as P, Zn, Ca, and Cu when they are in limited supply, improving plant nutrition (Marschner and Dell, 1994). The formation of mycorrhizas creates an arbuscular mycorrhizal (AM) pathway for Pi uptake (MPU), which interacts with the DPU (Smith et al, 2003, 2004). Pi uptake via the MPU is often reduced with increasing soil P concentration, but this effect is influenced by the AM fungal species (Facelli et al, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call