Abstract

AbstractA pot culture experiment was conducted to examine the effects of arbuscular mycorrhizal (AM) fungi and soil developmental stages on the growth and nutrient absorption of pioneer plants growing in the early stage of primary succession on Mt. Fuji. Four herbaceous plants, Polygonum cuspidatum (Polygonaceae), Miscanthus oligostachyus (Gramineae), Aster ageratoides var. ovatus (Compositae), and Hedysarum vicioides (Leguminosae), were grown from seed in soils collected from two different successional stages, bare ground and an herbaceous plant community. Spores of indigenous AM fungi collected from the herbaceous plant community were used as inoculum. The initial colonizer P. cuspidatum showed very low levels of AM colonization (<0.4%), whereas the average AM colonization levels of M. oligostachyus, A. ageratoides var. ovatus, and H. vicioides were within the range of 13–49%. AM fungi had positive effects on the growth and N acquisition of the leguminous species (H. vicioides) irrespective of soil developmental stages. In contrast, AM colonization did not increase the plant dry weight and N content of the non‐leguminous species (P. cuspidatum, M. oligostachyus, and A. ageratoides var. ovatus) in both soil developmental stages. A positive effect of AM colonization on P content was observed in M. oligostachyus, A. ageratoides var. ovatus, and H. vicioides only in soil collected from the herbaceous plant community. P. cuspidatum showed no or a negative response to AM colonization in all cases. These results suggest that the effect of AM fungi on plant growth depends more on the plant species than soil developmental stages in the early stage of primary succession in this volcanic area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.