Abstract

Goal: Over the decades, there have been improvements in the sequence alignment algorithm, with significant advances in various aspects such as complexity and accuracy. However, human-defined algorithms have an explicit limitation in view of developmental completeness. This paper introduces a novel local alignment method to obtain optimal sequence alignment based on reinforcement learning. Methods: There is a DQNalign algorithm that learns and performs sequence alignment through deep reinforcement learning. This paper proposes a DQN x-drop algorithm that performs local alignment without human intervention by combining the x-drop algorithm with this DQNalign algorithm. The proposed algorithm performs local alignment by repeatedly observing the subsequences and selecting the next alignment direction until the x-drop algorithm terminates the DQNalign algorithm. This proposed algorithm has an advantage in view of linear computational complexity compared to conventional local alignment algorithms. Results: This paper compares alignment performance (coverage and identity) and complexity for a fair comparison between the proposed DQN x-drop algorithm and the conventional greedy x-drop algorithm. Firstly, we prove the proposed algorithm's superiority by comparing the two algorithms’ computational complexity through numerical analysis. After that, we tested the alignment performance actual HEV and E.coli sequence datasets. The proposed method shows the comparable identity and coverage performance to the conventional alignment method while having linear complexity for the n}{}X parameter. Conclusions: Through this study, it was possible to confirm the possibility of a new local alignment algorithm that minimizes computational complexity without human intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.