Abstract

The integration of renewable energy resources, such as solar and wind power, into the electric grid presents challenges partly due to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage. We consider, as a case study, the integration of renewable resources into the electric power generation portfolio of an island off the coast of Southern California, Santa Catalina Island, and investigate the feasibility of replacing diesel generation entirely with solar photovoltaics (PV) and wind turbines, supplemented with energy storage. We use a simple storage model alongside a combination of renewables and varying load-shedding characterizations to determine the appropriate area of PV cells, number of wind turbines, and energy storage capacity needed to stay below a certain threshold probability for load-shedding over a pre-specified period of time and long-term expected fraction of time at load-shedding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.